Midterm II Math 181B, UCSD, Spring 2018 Thursday, May 24th, 3:30pm-4:50pm Instructor: Eddie Aamari

- Write your PID, Name and Section legibly on your assignment.
- You may use a calculator (any type is fine), but no other electronic devices.
- You may not use your cell phone, tablet, or computer as a calculator.
- One handwritten page of notes allowed. (both sides OK, 8.5" by 11")
- Put away (and silence!) your cell phone and other devices that can be used for communication or can access the Internet.
- Show all of your work on your blue book; no credit will be given for unsupported answers.
- Justify your answers.

Exercise I

Let $X_1, \ldots, X_n \sim_{i.i.d.} Uniform([0, \theta])$ be a i.i.d. sample of size n = 50 with uniform distribution over the interval $[0, \theta]$, where $\theta > 0$ is unknown. We take a level $\alpha = 5\%$.

1. Set up an sign test for deciding whether or not the 45th percentile of the X-distribution is equal to 3. Provide a rejection region for the test.

2. Compute the asymptotic p-value of the sign test if the number of data points strictly larger than 3 was 25.

3. With what probability will your procedure commit a Type II error if 6 is the true 45th percentile? (Compute an asymptotic Type II error.)

Exercise II

Recall that if $Z \sim \mathcal{P}(\mu)$ has Poisson distribution with parameter $\mu > 0$, for all integer $k \geq 0$, $\mathbb{P}(Z = k) = e^{-\mu} \frac{\mu^k}{k!}$, where $k! = 1 \times 2 \times \ldots \times k$ stands for the factorial of k. Suppose we have two independent samples

$$X_1, \ldots, X_n \sim_{i.i.d.} \mathcal{P}(\lambda_X) \text{ and } Y_1, \ldots, Y_m \sim_{i.i.d.} \mathcal{P}(\lambda_Y).$$

Use the likelihood ratio method to derive a testing procedure for

$$H_0: \lambda_X = \lambda_Y$$
 against $H_1: \lambda_X \neq \lambda_Y$

with asymptotic significance level $\alpha \in (0, 1)$. Show every step of your derivation.

Exercise III

Recall that the exponential distribution $\mathcal{E}(\lambda)$ ($\lambda > 0$) has density $f_{\lambda}(x) = \lambda e^{-\lambda x} \mathbf{1}_{x \ge 0}$. The Kolmogorov-Smirnov test statistic of order $n \ge 1$ is

$$D_n = \sqrt{n} \sup_{t \in \mathbb{R}} |F_n(t) - F(t)|$$

= $\sqrt{n} \max_{1 \le i \le n} \max\left\{ \left| F(X_{(i)}) - \frac{i}{n} \right|, \left| F(X_{(i)}) - \frac{i-1}{n} \right| \right\}.$

In this exercise, we observe a single real random variable X (n = 1) drawn from an unknown distribution P. We want to test

$$H_0: P = \mathcal{E}(1)$$
 against $H_1: P \neq \mathcal{E}(1)$.

For questions 1 to 4, we assume that H_0 holds, so that X has distribution $\mathcal{E}(1)$.

1. Compute the cumulative distribution function F and quantile function F^{-1} of the distribution $\mathcal{E}(1)$.

2. Give an explicit formula for the Kolmogorov-Smirnov test statistic D_1 of this test. Write your final answer in the form $D_1 = \max\{U, V\}$, where U, V are real random variables to be specified.

3. Using notation of part 2, give the distributions of U and V. Describe them using classical distributions and sketch their densities.

4. What is the distribution of D_1 ? Describe it using a classical distribution and sketch its density. (*Hint: first compute its c.d.f.*)

5. Give explicitly the rejection region of the Kolmogorov-Smirnov test of level $\alpha \in (0, 1)$.

 Table A.I
 Cumulative Areas under the Standard Normal Distribution

					\frown					
Z.	0	1	2	3	4	5	6	7	8	9
-3.	0.0013	0.0013	0.0013	0.0012	0.0012	0.0011	0.0011	0.0011	0.0010	0.001
-2.9	0.0019	0.0018	0.0017	0.0017	0.0016	0.0016	0.0015	0.0015	0.0014	0.001
-2.8	0.0026	0.0025	0.0024	0.0023	0.0023	0.0022	0.0021	0.0021	0.0020	0.001
-2.7	0.0035	0.0034	0.0033	0.0032	0.0031	0.0030	0.0029	0.0028	0.0027	0.002
-2.6	0.0047	0.0045	0.0044	0.0043	0.0041	0.0040	0.0039	0.0038	0.0037	0.003
-2.5	0.0062	0.0060	0.0059	0.0057	0.0055	0.0054	0.0052	0.0051	0.0049	0.004
-2.4	0.0082	0.0080	0.0078	0.0075	0.0073	0.0071	0.0069	0.0068	0.0066	0.000
-2.3	0.0107	0.0104	0.0102	0.0099	0.0096	0.0094	0.0091	0.0089	0.0087	0.00
-2.2	0.0139	0.0136	0.0132	0.0129	0.0126	0.0122	0.0119	0.0116	0.0113	0.01
-2.1	0.0179	0.0174	0.0170	0.0166	0.0162	0.0158	0.0154	0.0150	0.0146	0.014
-2.0	0.0228	0.0222	0.0217	0.0212	0.0207	0.0202	0.0197	0.0192	0.0188	0.01
-1.9	0.0287	0.0281	0.0274	0.0268	0.0262	0.0256	0.0250	0.0244	0.0238	0.02
-1.8	0.0359	0.0352	0.0344	0.0336	0.0329	0.0322	0.0314	0.0307	0.0300	0.02
-1.7	0.0446	0.0436	0.0427	0.0418	0.0409	0.0401	0.0392	0.0384	0.0375	0.03
-1.6	0.0548	0.0537	0.0526	0.0516	0.0505	0.0495	0.0485	0.0475	0.0465	0.04
-1.5	0.0668	0.0655	0.0643	0.0630	0.0618	0.0606	0.0594	0.0582	0.0570	0.05
-1.4	0.0808	0.0793	0.0778	0.0764	0.0749	0.0735	0.0722	0.0708	0.0694	0.06
-1.3	0.0968	0.0951	0.0934	0.0918	0.0901	0.0885	0.0869	0.0853	0.0838	0.08
-1.2	0.1151	0.1131	0.1112	0.1093	0.1075	0.1056	0.1038	0.1020	0.1003	0.09
-1.1	0.1357	0.1335	0.1314	0.1292	0.1271	0.1251	0.1230	0.1210	0.1190	0.11
-1.0	0.1587	0.1562	0.1539	0.1515	0.1492	0.1469	0.1446	0.1423	0.1401	0.13
-0.9	0.1841	0.1814	0.1788	0.1762	0.1736	0.1711	0.1685	0.1660	0.1635	0.16
-0.8	0.2119	0.2090	0.2061	0.2033	0.2005	0.1977	0.1949	0.1922	0.1894	0.18
-0.7	0.2420	0.2389	0.2358	0.2327	0.2297	0.2266	0.2236	0.2206	0.2177	0.21
-0.6	0.2743	0.2709	0.2676	0.2643	0.2611	0.2578	0.2546	0.2514	0.2483	0.24
-0.5	0.3085	0.3050	0.3015	0.2981	0.2946	0.2912	0.2877	0.2843	0.2810	0.27
-0.4	0.3446	0.3409	0.3372	0.3336	0.3300	0.3264	0.3228	0.3192	0.3156	0.31
-0.3	0.3821	0.3783	0.3745	0.3707	0.3669	0.3632	0.3594	0.3557	0.3520	0.34
-0.2	0.4207	0.4168	0.4129	0.4090	0.4052	0.4013	0.3974	0.3936	0.3897	0.38
-0.1	0.4602	0.4562	0.4522	0.4483	0.4443	0.4404	0.4364	0.4325	0.4286	0.42
-0.0	0.5000	0.4960	0.4920	0.4880	0.4840	0.4801	0.4761	0.4721	0.4681	0.46

(cont.)

z	0	1	2	3	4	5	6	7	8	9
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7703	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9278	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9430	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9648	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9700	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9762	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9874	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990

Table A.I Cumulative Areas under the Standard Normal Distribution (cont.)

Source: From Samuels/Witmer, *Statistics for Life Sciences*, Table 3, p. 675, © 2003 Pearson Education, Inc. Reproduced by permission of Pearson Education, Inc.